Synthesis of reinforcement learning, neural networks and PI control applied to a simulated heating coil

نویسندگان

  • Charles W. Anderson
  • Douglas C. Hittle
  • Alon D. Katz
  • R. Matthew Kretchmar
چکیده

An accurate simulation of a heating coil is used to compare the performance of a proportional plus integral (PI) controller, a neural network trained to predict the steady-state output of the PI controller, a neural network trained to minimize the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained to minimize the sum of the squared error over time. Although the PI controller works very well for this task, the neural networks produce improved performance. The reinforcement learning agent, when combined with a PI controller, learned to augment the PI control output for a small number of states for which control can be improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

An accurate simulation of a heating coil is used to compare the performance of a PI controller, a neural network trained to predict the steady-state output of the PI controller, a neural network trained to minimize the n-step ahead error between the coil output and the set point, and a reinforcement learning agent trained to minimize the sum of the squared error over time. Although the PI contr...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Path Integral Networks: End-to-End Differentiable Optimal Control

In this paper, we introduce Path Integral Networks (PI-Net), a recurrent network representation of the Path Integral optimal control algorithm. The network includes both system dynamics and cost models, used for optimal control based planning. PI-Net is fully differentiable, learning both dynamics and cost models end-to-end by back-propagation and stochastic gradient descent. Because of this, P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI in Engineering

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1997